5 research outputs found

    Intelligent image cropping and scaling

    Get PDF
    Nowadays, there exist a huge number of end devices with different screen properties for watching television content, which is either broadcasted or transmitted over the internet. To allow best viewing conditions on each of these devices, different image formats have to be provided by the broadcaster. Producing content for every single format is, however, not applicable by the broadcaster as it is much too laborious and costly. The most obvious solution for providing multiple image formats is to produce one high resolution format and prepare formats of lower resolution from this. One possibility to do this is to simply scale video images to the resolution of the target image format. Two significant drawbacks are the loss of image details through ownscaling and possibly unused image areas due to letter- or pillarboxes. A preferable solution is to find the contextual most important region in the high-resolution format at first and crop this area with an aspect ratio of the target image format afterwards. On the other hand, defining the contextual most important region manually is very time consuming. Trying to apply that to live productions would be nearly impossible. Therefore, some approaches exist that automatically define cropping areas. To do so, they extract visual features, like moving reas in a video, and define regions of interest (ROIs) based on those. ROIs are finally used to define an enclosing cropping area. The extraction of features is done without any knowledge about the type of content. Hence, these approaches are not able to distinguish between features that might be important in a given context and those that are not. The work presented within this thesis tackles the problem of extracting visual features based on prior knowledge about the content. Such knowledge is fed into the system in form of metadata that is available from TV production environments. Based on the extracted features, ROIs are then defined and filtered dependent on the analysed content. As proof-of-concept, this application finally adapts SDTV (Standard Definition Television) sports productions automatically to image formats with lower resolution through intelligent cropping and scaling. If no content information is available, the system can still be applied on any type of content through a default mode. The presented approach is based on the principle of a plug-in system. Each plug-in represents a method for analysing video content information, either on a low level by extracting image features or on a higher level by processing extracted ROIs. The combination of plug-ins is determined by the incoming descriptive production metadata and hence can be adapted to each type of sport individually. The application has been comprehensively evaluated by comparing the results of the system against alternative cropping methods. This evaluation utilised videos which were manually cropped by a professional video editor, statically cropped videos and simply scaled, non-cropped videos. In addition to and apart from purely subjective evaluations, the gaze positions of subjects watching sports videos have been measured and compared to the regions of interest positions extracted by the system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows

    A method of adapting video images to small screen sizes

    No full text

    A Glimpse in ChatGPT Capabilities and its impact for AI research

    Full text link
    Large language models (LLMs) have recently become a popular topic in the field of Artificial Intelligence (AI) research, with companies such as Google, Amazon, Facebook, Amazon, Tesla, and Apple (GAFA) investing heavily in their development. These models are trained on massive amounts of data and can be used for a wide range of tasks, including language translation, text generation, and question answering. However, the computational resources required to train and run these models are substantial, and the cost of hardware and electricity can be prohibitive for research labs that do not have the funding and resources of the GAFA. In this paper, we will examine the impact of LLMs on AI research. The pace at which such models are generated as well as the range of domains covered is an indication of the trend which not only the public but also the scientific community is currently experiencing. We give some examples on how to use such models in research by focusing on GPT3.5/ChatGPT3.4 and ChatGPT4 at the current state and show that such a range of capabilities in a single system is a strong sign of approaching general intelligence. Innovations integrating such models will also expand along the maturation of such AI systems and exhibit unforeseeable applications that will have important impacts on several aspects of our societies
    corecore